
8 The Delphi Magazine Issue 51

Safecall Defined
Handling exceptions in COM and Automation
by Brian Long

If you have dabbled with Automa-
tion or COM in Delphi, you have

probably seen the reserved word
safecall scattered about the
source code generated automati-
cally by Delphi. You might also
have bumped into the term in the
Environment Options dialog. If you
have ever seen it and wondered
what it meant, then read on.

I have seen a few references to
safecall, but nothing that covers
the whole subject from start to
finish, so I’ll try and rectify that
now. As usual, we will firstly look a
little into the background of the
subject.

On what initially appears to be
an unrelated subject, you can find
many references telling you that
when you write a DLL, you must
not allow an exception to escape
from an exported routine. The DLL
client might not be written in
Delphi, and so wouldn’t know what
to do about it. Instead you are sup-
posed to write exception handlers
around every exported routine
and, if an exception occurs, you
should return some error value.

The COM Exception Rule
COM applications have a similar
rule. They must not allow any
exceptions to bubble out, and
instead must catch and handle
them all. This is because COM
doesn’t support propagation of
exceptions across proxied inter-
face calls, meaning calls to COM
object interface methods in
out-of-process servers, MTS apart-
ment model servers or remote
DCOM servers. However, COM
does provide a mechanism that
allows a COM object to tell a client
that an exception occurred, and
give some details about it.

This so-called rich error infor-
mation is provided by COM error
objects. The Win32 COM system
supports one error object per logi-
cal thread in a COM application. If
an exception occurs, and the

server supports error objects, the
error object will be filled up via its
ICreateErrorInfo interface with
information about the error. If the
client sees that the server sup-
ports error objects, it can retrieve
the error object’s IErrorInfo inter-
face and manufacture a suitable
exception with the available infor-
mation on the client side to report
the problem.

COM objects indicate that they
support error objects by imple-
menting the ISupportErrorInfo
interface. Delphi’s COM and
Automation objects do just that.

In many development tools, the
business of catching server excep-
tions and filling up error objects is
down to the programmer. As
seems to be very common with
writing Delphi COM applications,
the Inprise developers have
relieved you of this task. This is
exactly what the safecall directive
does. An interface method marked
safecall uses the same calling con-
ventions as a stdcall method, but
does a fair amount of behind-the-
scenes work on your behalf.

When you use the IDE wizard and
type library editor to create an
Automation object, the IDE creates
an interface definition and also an
implementation of the interface in
a class. If you look carefully at the
method declarations in the gener-
ated interface and class, you will
see them all marked with the
safecall calling convention. The
same is true of COM object meth-
ods if the environment options are
set appropriately.

If an exception happens in a COM
interface method which is marked
with safecall, and does not get
explicitly caught with a try..
except..end statement, Delphi
code automatically sets up an
error object in case the client
wants to make use of it.

Any Delphi client program that
calls a safecall method will take
note of any error object that gets

generated and automatically raise
an exception on the client side.

Two Sides To Safecall
So there are two sides to the Delphi
safecall directive. The implemen-
tation of a COM safecall method
picks up unhandled exceptions
and builds error objects. But also,
when a safecall method is
invoked, any reported COM error
is picked up and transformed into
a Delphi exception.

The safecall directive is a lan-
guage construct unique to Delphi,
but it was created to support and
implement defined COM error
reporting standards. Conse-
quently, a Delphi COM interface
with safecall methods can be
called from any non-Delphi client.
Also, any non-Delphi written COM
server can have its interface modi-
fied appropriately to use the
safecall directive and still be
accessed perfectly well by a Delphi
client.

Now that we have an idea of
what safecall does, let’s dig a little
deeper. The operation of safecall
is based around COM function
return values. To indicate what
happened during its execution, a
COM routine returns an HResult, as
defined in the sidebar on page 13.
The HResult value indicates if
something went wrong or not, and
often goes on to describe exactly
what it was that went wrong. If an
exception happens in a COM rou-
tine it is typical to have an HResult
returned indicating an error, but if
you examine any safecall routine,
you will not see any evidence of an
HResult in the definition.

This apparent lack of an HResult
is deceptive because all safecall
routines do actually return one,
but it is hidden in the code gener-
ated for you by Delphi. Let’s take
an example method declaration,
plucked from an interface imple-
mented by a Delphi Automation
object:

10 The Delphi Magazine Issue 51

procedure Foo(const Msg:
WideString); safecall;

This looks to the reader as a
procedure method that takes a
wide string parameter. However,
because it is marked as safecall,
the routine is actually imple-
mented as if it were defined as:

function Foo(
const Msg: WideString):
HResult; stdcall;

Similarly, a function method
declared:

function Bar(const D: Double):
WideString; safecall;

is really implemented like this:

function Bar(D: Double;
out Value: WideString):
HResult; stdcall;

You can see the original function
return value is actually passed
back through the last parameter,
making way for the HResult to be
the function result. Whilst we
Delphi developers see the former
declarations of these routines, the
outside world will always see the
latter versions (the type library
records the full HResult returning
versions).

So why does safecall hide the
HResult from us? Put simply, it is to
make things easier for us whilst
building COM applications. In most
cases, when implementing an
interface in a COM server, the only
HResult codes that need to be
returned are S_OK for success and
E_UNEXPECTED for failure. With the
error object fully describing the
problem, more details in the
HResult are not strictly necessary.

So what a safecall routine does
is to wrap an exception handler
around the code in your interface
method implementation. If no
exception happens, an HResult of
S_OK is returned. However, if an
unhandled exception occurs, the
error object is set up for the client
application to pick up, and an
HResult of E_UNEXPECTED is
returned. On the client side, when
you call a safecall method, Delphi

checks the returned
HResult. If it is an error
code, the error object is
retrieved to recreate the
exception.

This makes it look like
the COM server raised an
exception and the client
reported it, which is
great! For the Delphi pro-
grammer, there are no
HResult values, and no
need to be concerned
about getting the
exception across pro-
cess boundaries. The
exception just magically
propagates from server
to client without any help from the
developer.

With this information to hand,
you can now see another example
of how COM applications written in
Delphi are that much easier to put
together than in other languages.
The COM error conventions are
catered for automatically through
safecall. This adds to Delphi’s
automatic generation of the calls to
IUnknown’s reference counting
methods, encapsulation of both
safe arrays and late bound Auto-
mation within the Delphi Variant
data type and no-fuss COM
aggregation with the implements
keyword.

Is There A Downside?
So I have painted a very rosy pic-
ture of the effect of safecall, but it
is not without its little problems.
The safecall syntax does not pro-
vide access to the HResult that will
be returned. For your own inter-
faces this should not pose a prob-
lem. However, if you are
implementing a pre-defined inter-
face in a COM server, and if that
interface specifies that certain
HResult values must be returned
under various circumstances, then
safecall is not an option. The same
is true if you decide to return
custom HResult values from COM
methods.

In these cases, you will have to
forego the safecall directive, and
change the declaration of the rou-
tine in the type library editor (on
the Text page, where you can see
the whole declaration listed). This

is best done with the type library
language set to Pascal, as opposed
to IDL, in the Type Library page of
the Environment Options dialog
(see Figure 1). Change safecall to
stdcall, add the HResult return
type and, if the routine started life
as a safecall function (as opposed
to a procedure), make a new out
parameter to take care of what was
the function result type. When the
type library editor refreshes the
source files, this change will be
reflected in the COM implementa-
tion class. The method implemen-
tation must also be changed to
include an exception handler, to
prevent any exceptions going
unhandled.

As an example of changing
safecall declarations, Figure 2
shows the two interface methods
from earlier defined as safecall in
the type library editor (it shows
the whole interface in textual
form). Figure 3 then shows how to
edit these methods to turn them
into non-safecall versions with
access to the HResult.

Another issue is that of hard-
ware exceptions, such as Access
Violations and divide by zero
errors. If one of these is raised in a
safecall method, the RTL code is
unable to correctly set up the error
object with the Delphi exception
details. This is because the raised
exception is not a Delphi software
exception at that point, it is

➤ Figure 1: Safecall and
type library editor options
in Delphi 5.

12 The Delphi Magazine Issue 51

instead an OS hardware exception.
Because there is no Delphi excep-
tion object to work with, no error
object is set up. Instead, E_UNEX-
PECTED is returned directly and the
client ends up generating an excep-
tion saying simply: Unexpected
failure. This is the textual
description of the E_UNEXPECTED
HResult.

In Delphi 4 and 5, you can control
whether all Automation object and
COM object methods are automati-
cally marked as safecall with
another option on the Type Library
page of the Environment Options
dialog (see Figure 1 again). The
SafeCall function mapping group
box gives you three choices. The
default setting (Only dual inter-
faces) ensures methods of all dual
interfaces (those created with the
Automation object) are marked
safecall, where COM objects will
be marked stdcall. The All
v-table interfaces option will
mark COM object and Automation
object methods as safecall, and
the Do not map option prevents
Delphi marking any methods as
safecall.

If you needed to access the
HResult for all your COM methods,
you may choose to disable
safecall function mapping to save
on the manual editing of method
declarations in the type library
editor.

Safecall Internals
What has been discussed so far
represents the most well known
side of safecall subroutines. But
there is more information sur-
rounding the subject, pertaining to
the underlying mechanics of
safecall. The fact that an excep-
tion causes a safecall method to
return E_UNEXPECTED is not intrinsi-
cally linked with the safecall
reserved word. The HResult is
actually returned from the object’s
virtual SafeCallException method.

When an exception occurs in a
safecall method, code in the
System unit’s HandleAutoException
routine calls the method whose
address is stored vmtSafeCall-
Exception bytes before the object’s
main VMT. This equates to calling
the virtual SafeCallException

method, which is originally defined
in TObject:

function SafeCallException(
ExceptObject: TObject;
ExceptAddr: Pointer):
HResult;

The implementation of TObject.-
SafeCallException simply ignores
its two parameters and returns
E_UNEXPECTED. The COM object
classes override this method to
additionally set up the COM error
object. TComponent also overrides
this method, primarily to help
when a VCL component is wrapped
up as an ActiveX. If there is a
COM object connected to the

component’s ComObject property
(and by definition, also to its
VCLComObject property), TComp-
onent.SafeCallException makes
use of the COM object’s SafeCall-
Exception method.

A safecall error return value
can only be correctly picked up by
the code that called the routine if
the address of a safecall error
return handling routine has been
assigned to the global SafeCall-
ErrorProc pointer variable (which
defaults to nil). This routine takes
the error code and address,
and should react to the problem
by raising some appropriate

➤ Figure 2: Normal safecall methods in the type library editor.

➤ Figure 3: Safecall methods changed back to stdcall.

procedure TSomeClass.Foo(const Msg: WideString);
begin
//Your code goes here, e.g.
Application.MainForm.Tag := StrToInt(Msg)

end;
function TSomeClass.Bar(D: Double): WideString;
begin
//Your code goes here, e.g.
Result := FloatToStr(D)

end;

➤ Listing 1

November 1999 The Delphi Magazine 13

HResults Dissected
To indicate problems, COM object methods return an
HResult (result handle). An HResult is a bit of a misnomer as
it is not really a handle to anything. It is just a 32-bit integer
value used to return success, failure or warning codes.

The high bit of an HResult (bit 31, called the severity bit)
indicates success (if clear) or failure (if set). The next four
bits are reserved by Windows and must currently be zero.
The other eleven bits of the high word represent the facility
code, and specify which group of status codes the HResult
belongs to, effectively identifying the system service that
generated the error. The low word represents the error
code and indicates what happened.

To explicitly examine the severity bit, which means to
find out if the HResult-generating call succeeded or failed,
you have several options. The preferred approach is to use
the Succeeded or Failed functions which do the check for
you. Other options include calling HResultSeverity and
comparing the result against SEVERITY_SUCCESS or SEVER-
ITY_ERROR. Finally, there is an IsError function which does
the same as Failed.

Routines also exist for getting the other sections out of
an HResult, including HResultCode and HResultFacility.
More exist to manufacture HResult values, such as
MakeResult (out of a severity, facility and status code) and
HResultFromWin32. All these routines (and constants) are
declared in the Windows import unit in 32-bit Delphi. Addi-
tionally, the ComObj unit (or OleAuto unit in Delphi 2)
defines a helper routine called OleCheck. This takes an
HResult and, if it indicates failure, will raise an
EOleSysError exception.

Delphi 4 made a small faux pas with respect to the
Delphi translation of the HResult type. It is supposed to
be a signed type and was correctly defined to be a
Longint in Delphi 3. Delphi 4 (wrongly) changed this to
a DWord (itself defined as a LongWord), but Delphi 5
repairs the damage. When correctly defined as signed,
just checking if the value is negative (or not) will indi-
cate failure (or success). However, the changing defini-
tion will not affect your applications if they only use the
utility routines, such as Succeeded and Failed.

A handful of sample HResult values are listed in
Table 1, with small commentary on the meaning held
by their bits. Specific HResult error codes are named
with this pattern:

<Facility>_<Severity>_<Reason>

where <Facility> is either the facility code, or other
distinguishing identifier, <Severity> is either S (suc-
cess) or E (error) and <Reason> is a short descriptive
identifier. Error codes within FACILITY_NULL omit the
<Facility>_ prefix, for example E_UNEXPECTED. The
currently available facility codes are listed in Table 2.

Microsoft is responsible for creating new facility
codes, and also for creating error codes in all facilities
other than these. Custom HResult codes should really
use FACILITY_ITF and the error code value should be
between $200 and $FFFF (COM reserves the lower
codes).

Windows error constant Value Severity Bit Facility Code SCode Meaning

S_OK or NOERROR $00000000 SEVERITY_SUCCESS (0) FACILITY_NULL (0) 0 Function worked and
returned True

S_FALSE $00000001 SEVERITY_SUCCESS (0) FACILITY_NULL (0) 1 Function worked and
returned False

E_UNEXPECTED $8000FFFF SEVERITY_ERROR (1) FACILITY_NULL (0) $FFFF Catastrophic failure

E_NOTIMPL $80004001 SEVERITY_ERROR (1) FACILITY_NULL (0) $4001 Method has no useful
implementation

DISP_E_MEMBERNOTFOUND $80020003 SEVERITY_ERROR (1) FACILITY_DISPATCH (2) 3 Automation method/
property does not exist
in server

DISP_E_PARAMNOTFOUND $80020004 SEVERITY_ERROR (1) FACILITY_DISPATCH (2) 4 Parameter in Automation
method does not exist

➤ Above: Table 1 ➤ Below: Table 2

Facility Code Meaning Sample HResult

FACILITY_NULL (0) Error code with no specific grouping E_UNEXPECTED ($8000FFFF)

FACILITY_RPC (1) Error code from an underlying Remote Procedure Call RPC_E_SERVER_DIED ($80010007)

FACILITY_DISPATCH (2) Error code related to IDispatch interface DISP_E_TYPEMISMATCH ($80020005)

FACILITY_STORAGE (3) Persistent storage related error code. Status codes
lower than 256 have the same meaning as the
corresponding DOS error code

STG_E_FILENOTFOUND ($80030002)

FACILITY_ITF (4) Interface-specific error code. If another interface
returns the same HResult, you can expect the meaning
to be different

OLE_E_OLEVERB ($80040000)

FACILITY_WIN32 (7) The status code is a Win32 API result code or network
error mapped to an HResult

E_OUTOFMEMORY ($8007000E)

FACILITY_WINDOWS (8) Error code from a Microsoft-defined interface CO_E_CLASS_CREATE_FAILED ($80080001)

FACILITY_SSPI (9) CryptoAPI-related error code NTE_BAD_HASH ($80090002)

FACILITY_CONTROL ($A) OLE-control related error code

FACILITY_CERT ($B) Trust Verification related error code TRUST_E_PROVIDER_UNKNOWN ($800B0001)

14 The Delphi Magazine Issue 51

exception. When writing a COM
application, the ComObj unit’s
initialisation section installs a
safecall error handler that can
pick up an error object and
manufacture an EOleSysError
exception.

If a safecallmethod has been set
up in a non-COM object, and it lets
an exception go unhandled, then
things don’t initially work as well
as within a COM application. A call
to a safecallmethod that returns a
value other than S_OK will trigger
the System unit’s CheckAutoResult
procedure. When SafeCallError-
Proc is found to be nil, this causes
the SysUtils error and exception
handling to generate a runtime
error with the internal code
reSafeCallError.

In an application without
SysUtils used anywhere, this will
cause a runtime error 229. With
SysUtils used, all runtime errors
should be reported as specific
exceptions. Unfortunately, Delphi
3 and 4 had no dedicated exception
type for this runtime error, so you
end up with an EInOutError raised.
In Delphi 5 and higher, you get a
more descriptive ESafecall-
Exception exception.

You will also get this same
error/exception generated if the
routine referred to by
SafeCallErrorProc fails to raise an
exception.

Undressing Safecall
Now that we know how safecall
works, we can go back to the
sample safecall interface method
declarations shown earlier (Foo
and Bar) and consider their
implementations in a COM server
object. The source code you would
typically see for these safecall
methods is shown in Listing 1, but
their actual implementations
would be more like Listing 2 by the
time Delphi compiles them.

On the client side, Listing 3
shows how we should call safecall

interface methods. Listing 4 shows
what really happens during
safecall method invocations,
thanks to the extra code Delphi
generates. As you can see, the
HResult return value gets checked
for error status. If it is an error
code, the address at which the
error occurred is extracted from
the stack and passed, along with
the HResult, to the safecall error
handler. If no handler exists, a
runtime error is generated.
Normally, SysUtils will turn this
into an exception, but if SysUtils
has not plugged itself in, a terminal
runtime error is generated.

More Safecall Support
In addition to COM error propaga-
tion, the COM and Automation
object classes from the ComObj unit
have extra code in their
SafeCallException method (from
Delphi 4 onwards). They cater for a
possible requirement for COM
servers to report safecall excep-
tions to some dedicated error log-
ging process. Normally, a server
exception is raised on the client,
and would usually produce a
modal dialog that needs user
intervention to remove.

For hands-off systems, the pro-
grammer can create an object that
implements the ComObj unit’s
IServerExceptionHandler interface
and assign it to the COM object’s
ServerExceptionHandler property.
Whenever a safecall exception
happens, this causes the
interface’s OnException method to

function TSomeClass.Foo(const Msg: WideString): HResult;
begin
try
Result := S_OK;
//Your code goes here, eg
Application.MainForm.Tag := StrToInt(Msg)

except
//The COM object's SafeCallException will set Result
//to E_UNEXPECTED and also set up a COM error object
Result := SafeCallException(ExceptObject, ExceptAddr)

end;
end;
function TSomeClass.Bar(D: Double; out Value: WideString): HResult;
begin
try
Result := S_OK;
//Your code goes here, eg
Value := FloatToStr(D)

except
//The COM object's SafeCallException will set Result
//to E_UNEXPECTED and also set up a COM error object
Result := SafeCallException(ExceptObject, ExceptAddr)

end;
end;

➤ Listing 2

intf.Foo('1234');
...
intf.Bar(Pi);

procedure CheckHResult(Res: HResult);
type
TErrorProc = procedure(ErrorCode: Integer; ErrorAddr: Pointer);

var
ErrorAddr: Pointer;

const
reSafeCallError = 24;
rteSafeCallError = 229;

begin
if Failed(Res) then begin
//Get exception address from stack
asm
mov ECX, [ESP+20]
mov ErrorAddr, ECX

end;
//Call safecall error handler, if set
if Assigned(SafeCallErrorProc) then
TErrorProc(SafeCallErrorProc)(Res, ErrorAddr)

else
//No safecall error handler, so call RTL error handler, if installed
if Assigned(ErrorProc) then
TErrorProc(ErrorProc)(reSafeCallError, ErrorAddr)

else
//No RTL error handler, so generate run-time error
RunError(rteSafeCallError)

end
end;
...
var
FuncRes: WideString;

...
CheckHResult(intf.Foo('hello'));
CheckHResult(intf.Bar(Pi, FuncRes));

➤ Listing 3

➤ Listing 4

16 The Delphi Magazine Issue 51

execute. This can then perform
whatever logging actions are
necessary, and optionally kill off
the error (so it doesn’t propagate
through to the client application).

The ServerExceptionHandler
property can be particularly useful
for standalone or MTS COM
objects used in active server pages
(directly supported in Delphi 5 and
later). The OnException method
could, for example, write excep-
tion information in HTML for the
web browser to display.

The sample project group
ComServerErrorLogger.bpg (on
this month’s disk) contains a COM
server project and a COM client
project that provide a simple dem-
onstration of this. The server
defines a TErrorLogger class which
implements the IServerException-
Handler interface. An instance of

this is constructed when the
TErrorTrappingTest COM object is
created (within the overridden
Initialize method), and assigned
to the ServerExceptionHandler
property. The COM class has five
methods, each of which generates
a different exception.

The TErrorLogger’s OnException
method writes various pieces of
information out to a specified text
file so they can be reviewed later.
In this case, the code does not kill
off the exception, and so the client
still reports it, but this could easily
be changed. The Handled parame-
ter indicates whether the excep-
tion should be propagated back to
the client and defaults to 0 (not
handled, so send to client). Setting
the parameter to non-zero would
kill off the exception. Listing 5 has
the important bits of the code.

If you test out this COM client
and server, you can prove the

point made earlier about hardware
exceptions. Among the exceptions
generated by the server are a
divide by zero and an Access Viola-
tion. In both these cases, the client
does raise a representative excep-
tion but all it says is Unexpected
Failure.

What Next?
So now all the mysteries of
safecall have been laid bare, why
would we want to use it outside of a
COM application? Well, maybe you
wouldn’t. Maybe just knowing
what safecall means will be quite
enough.

But then again, maybe you have
some object(s) whose more inter-
esting methods have a propensity
for generating exceptions and you
want to keep track of which ones
are raised. In the case of a COM

TErrorLogger = class(TInterfacedObject,
IServerExceptionHandler)
protected
procedure OnException(const ServerClass, ExceptionClass,
ErrorMessage: WideString; ExceptAddr: Integer;
const ErrorIID, ProgID: WideString;
var Handled: Integer; var Result: HResult);

end;
...
procedure TErrorTrappingTest.Initialize;
begin
inherited;
ServerExceptionHandler := TErrorLogger.Create

end;
...
procedure TErrorLogger.OnException(const ServerClass,
ExceptionClass, ErrorMessage: WideString; ExceptAddr:
Integer; const ErrorIID, ProgID: WideString; var Handled:
Integer; var Result: HResult);

var
Log: TextFile;

const
LogName = 'C:\DelphiLog.Txt';

begin
AssignFile(Log, LogName);
if FileExists(LogName) then
Append(Log)

else
Rewrite(Log);

try
WriteLn(Log, Format('Class %s (ProgId: %s) raised an ‘+
‘%s exception at $%x: %s', [ServerClass, ProgID,
ExceptionClass, ExceptAddr, ErrorMessage]))

finally
CloseFile(Log)

end;
//Could kill off exception like this, but not in this case
//Handled := Integer(True)

end;

➤ Listing 5

uses
BDE;

var
EClass: ExceptClass = nil;
EMsg: String;

procedure SafeCallError(ErrorCode: Integer; ErrorAddr:
Pointer);

begin
//Must raise exception, but if SafeCallException handled
//the problem, we'll raise a "silent" exception
if EClass <> nil then
raise EClass.Create(EMsg)

else
SysUtils.Abort

end;
procedure LogError(ExceptObject: Exception;
ExceptAddr: Pointer);

var
Log: TextFile;

const
LogName = 'C:\DelphiLog.Txt';

begin
AssignFile(Log, LogName);
if FileExists(LogName) then
Append(Log)

else
Rewrite(Log);

try
WriteLn(Log, Format('%s'#9'%s'#9'$%p'#9'%s',
[ExceptObject.ClassName, ExceptObject.Message,
ExceptAddr, Application.ExeName]))

finally
CloseFile(Log)

end;

end;
function TForm1.SafeCallException(ExceptObject: TObject;
ExceptAddr: Pointer): HResult;

var
Handled: Boolean;

begin
Result := E_UNEXPECTED;
Handled := False;
if ExceptObject is EDBEngineError then begin
Handled := True;
case EDBEngineError(ExceptObject).Errors[0].ErrorCode of
DBIERR_DETAILRECORDSEXIST :
ShowMessage(
'Delete/change detail records first...');

DBIERR_KEYVIOL:
ShowMessage('Already used that one')

else
Handled := False

end
end;
LogError(Exception(ExceptObject), ExceptAddr);
if Handled then
EClass := nil

else begin
EClass := ExceptClass(ExceptObject.ClassType);
EMsg := Exception(ExceptObject).Message

end
end;
...
initialization
SafeCallErrorProc := @SafeCallError;

finalization
SafeCallErrorProc := nil;

end.

➤ Listing 6

November 1999 The Delphi Magazine 17

object, the previous section
described the perfect way of
logging exceptions.

For non-COM objects, you could
write exception handlers in all the
methods in question and log any
caught exceptions, but this has a
tendency to involve repeatedly
typing the same constructs and
calls. So, instead, you could mark
the methods in question as
safecall, override SafeCall-
Exception (adding into it any excep-
tion handling code you need) and
assign some suitable routine to
SafeCallErrorProc.

The TestSafeCall.Dpr sample
project on the disk tests the theory
out. The form has a safecall
method which is imaginatively
called DoSomething, which in this
case simply calls the Next method
of a TTable component. Various
buttons entice DoSomething into
failing, by setting the table up in
various ways before calling it. One
shuts the table first, causing an
EDatabaseError. The other two
cause EDBEngineError exceptions
relating to a key violation and a

referential integrity problem
(detail records exist, so we cannot
modify or delete the record).

The form overrides its Safe-
CallException method primarily to
log the exception, writing out to a
text file the exception class name
and message, the address at which
the exception was raised, and
finally the application name.
Additionally, in this case, the code
also picks out a couple of specific
exceptions that might come about,
and deals with them in a specific
way (by displaying its own
message boxes).

To keep the exception logic of
the application roughly normal,
SafeCallException notes down the
message and exception class type
that was picked up. The safecall
error handler then recreates the
exception when it gets invoked.
Any exceptions that SafeCall-
Exception decides to handle must
cause the safecall error handler
not to produce an exception dialog
for consistency (it calls Abort).
Listing 6 shows some pertinent
code excerpts.

Summary
From reading this article, you
should have learnt that the
safecall reserved word causes a
COM method to use the standard
Win32 calling convention
(stdcall) and correctly handle
exception propagation from COM
server to client using standard
COM error reporting mechanisms.
Whilst you can shoe-horn safecall
into non-COM applications, its
primary purpose is to ease the
development of well-behaved
COM applications with good error
handling abilities.

Acknowledgements
Thanks go to Inprise R&D’s Danny
Thorpe for input and advice on
this safecall description.

Brian Long is an independent con-
sultant and trainer. You can reach
him at brian@blong.com

Copyright ©1999 Brian Long.
All rights reserved.

	The COM Exception Rule
	Two Sides To Safecall
	Is There A Downside?
	Safecall Internals
	HResults Dissected
	Undressing Safecall
	More Safecall Support
	What Next?
	Summary
	Acknowledgements

